Abstract

Abstract The geographic and diurnal variability of moist convection over tropical Africa and the east Atlantic is examined using the Tropical Rainfall Measuring Mission (TRMM) satellite and related to the variability of the convective environment. The stratiform rain fraction is highest within oceanic and continental regions just north of the equator. Both regions have high column relative humidity (CRH). In both monsoon and semiarid continental regions, stratiform rain fractions are significantly higher on days when the CRH is high, which suggests a relationship between these quantities. Large convective systems with high echo tops dominate the rainfall over the Sahel. The importance of CAPE and shear to the development of these types of systems is suggested by the fact these systems are especially common on days when the CAPE and shear are unusually high. Both deep convective and stratiform conditional rain rates increase with the size and echo-top height of convective systems. According to the TRMM Precipitation Radar (PR) near-surface rain rate, the highest deep convective and stratiform conditional rain rates occur off the coast of West Africa. However, comparisons between the PR near-surface rain rate and rain rates computed from Z–R relationships from the literature suggest that deep convective conditional rain rates over the Sahel are underestimated by the TRMM precipitation algorithm. Over the Sahel, small (large) convective systems produce most of the rainfall in the afternoon (early morning). This is associated with enhanced convective rainfall in the afternoon and stratiform in the early morning. The transition from small to large convective systems as convection propagates away from topographic features is also observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.