Abstract
In recognition that similarity in the density balance leads to resemblance in circulation between the two-dimensional non-rotating and three-dimensional rotating systems which have similar density stratification, we investigate convection induced by cooling at one side wall and heating at the sea surface by using a two-dimensional non-rotating model as idealized representation for the deep Pacific circulation. In the model, various vertical profiles are taken for the side wall cooling, which are assumed to correspond to the density structure of the Anatarctic Circumpolar Current. In a small diffusivity range, two important features are found to be robust against change in the vertical profile of the side wall cooling. One is that the density stratification is horizontally almost uniform. The other is that the balance in the density equation between the vertical advection and the vertical diffusion holds in the interior. Consequently, the vertical density balance, together with the equation of continuity, determines the circulation pattern for the prescribed vertical profile of the side wall cooling. The multi-layered meridional flow, which is expected to exist in the deep Pacific, is shown to form for certain vertical profiles of the side wall cooling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.