Abstract

A nonlinear, nonlocal, time-dependent treatment of convection suitable for use in models of cool giant stars is presented. Local conservation equations plus a diffusive transport equation are used to derive the convective hydrodynamic equations for the case in which turbulent pressure, energy, and viscosity cannot be ignored. The effects of convective overshooting, superadiabatic gradients, convection/pulsation interaction, and time dependence enter this treatment in a natural way. Methods of treating turbulent viscosity and acoustic losses are discussed. Also, an efficient computational scheme for computing the derivatives needed for an implicit hydrodynamic code is outlined. Application to RR Lyrae star envelopes will be presented in a companion paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.