Abstract

This paper describes a cylindrical container of finite dimensions, filled with two quiescent immiscible heat-conducting liquids with a common flat interface. The side walls and bases of the vessel are solid, there are no external forces, and the contact angle of the interface with the side wall of the container is π/2. The interface has a surface tension whose strength linearly depends on temperature. When one of the container bases is heated to a critical temperature, there is movement inside the vessel. When modeling takes into account the energy spent on the interface deformation. The emerging spectral problem is solved by the modified Galerkin method. For various liquids, in the case of monotonous vibrations, the dependence of a critical Marangoni number on a container size and a temperature ratio, specified on the cylinder bases, is obtained, and a perturbed motion velocity field is constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.