Abstract

Convection in a porous cavity driven by heating in the horizontal is analysed by a number of different techniques which yield a fairly complete description of the two-dimensional solutions. The solutions are governed by two dimensionless parameters: the Darcy-Rayleigh number R and the cavity aspect ratio A. We first find solutions valid for shallow cavities, A → 0, by using matched asymptotic expansions. These solutions are given up to O(A6R4). For A fixed, we find regular expansions in R by semi-numerical techniques, up to O(R30) in some cases. Series-improvement techniques then enable us to cover the range 0 ≤ R ≤ ∞. A limited result regarding bifurcations is noted. Finally, for R → ∞ with A fixed, we propose a self-consistent boundary-layer theory which extends previous approximate work. The results obtained by these different methods of solution are in good agreement with each other and with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.