Abstract

ABSTRACTAn experimental and theoretical study has been undertaken of the effects of natural and forced convection in horizontal epitaxial reactors. The epitaxial growth of GaAs was used as the experimental vehicle for this study. A mathematical model for mass, momentum and energy transfer in the reactor was developed. Excellent correlation between modeled and experimental results was demonstrated over a wide range of reactor pressures and susceptor geometries. Recirculation of hot gases, caused by natural convection, was found to result in a strong pressure dependence of growth rate at higher susceptor slopes. Low reactor pressures have been shown to be a more effective way to eliminate recirculation than high gas flow rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.