Abstract

This article concentrates on singularly perturbed static convection–diffusion equations with varying coefficients on a metric graph G=(V,E). Our interest is in the convection dominated situation which is described by a small parameter ϵ>0 in front of the diffusion term. As ϵ→0, the reduced problem may exhibit boundary layers at the multiple vertices as well as at the simple nodes. We analyze the possible scenarios and validate the results in several test cases. We investigate several exemplary graphs and use an upwind finite difference method on a piece-wise Shishkin mesh. Error estimates are also discussed to show ϵ-uniform convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.