Abstract

The optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, we recruited 30 unvaccinated convalescent donors who had previously been infected with COVID-19 and 7 unexposed asymptomatic controls. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG via semiquantitative ELISA, and T-cell immunity against S1 and S2 subunits were studied via IFN-γ enzyme-linked immunosorbent spot (ELISpot) and flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2-positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and the determination of optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARS-CoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call