Abstract

Abstract. Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agreement with previous studies in this region, we discovered differences in the methane distributions between the western and eastern Gotland Basin, pointing to in situ methane production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through the use of a high-resolution hydrographic model of the Baltic Sea, we showed that methane below the thermocline can be transported by upwelling events towards the sea surface, thus contributing to the methane flux at the sea–air interface. To quantify zooplankton-associated methane production rates, we developed a sea-going methane stripping-oxidation line to determine methane release rates from copepods grazing on 14C-labelled phytoplankton. We found that (1) methane production increased with the number of copepods, (2) higher methane production rates were measured in incubations with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton communities, and (3) methane was only produced on a Rhodomonas sp. diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane production rates increased with incubation time. The latter finding suggests that methanogenic substrates for water-dwelling microbes are released by cell disruption during feeding, defecation, or diffusion from fecal pellets. In the field, particularly high methane concentrations coincided with stations showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a major food source of the T. longicornis dominated zooplankton community, supporting the proposed link between copepod grazing, DMSP/DMSO release, and the build-up of subthermocline methane enrichments in the central Baltic Sea.

Highlights

  • Climate change, caused by increased greenhouse gas concentrations in the atmosphere, has an indisputable influence on societal and economical evolution on local, regional and global scales

  • We found that (1) methane production increased with the number of copepods, (2) higher methane production rates were measured in incubations with Temora longicornis (125 ± 49 fmol methane copepod−1 d−1) than in incubations with Acartia spp. (84 ± 19 fmol CH4 copepod−1 d−1) dominated zooplankton communities, and (3) methane was only produced on a Rhodomonas sp. diet, and not on a cyanobacteria diet

  • Lipid biomarkers extracted from phytoplanktonand copepod-rich samples revealed that Dinophyceae are a major food source of the T. longicornis dominated zooplankton community, supporting the proposed link between copepod grazing, DMSP/DMSO release, and the build-up of subthermocline methane enrichments in the central Baltic Sea

Read more

Summary

Introduction

Climate change, caused by increased greenhouse gas concentrations in the atmosphere, has an indisputable influence on societal and economical evolution on local, regional and global scales. In order to better predict future climate development, a more precise quantitative and mechanistic understanding of individual sources and sinks of relevant greenhouse gases, such as methane, is crucial. Methane as an atmospheric component has a relevant impact on the earth’s climate (Etminan et al, 2016; IPCC, 2013). Biogenic sources of methane are associated with microorganisms (Archaea) in anoxic habitats, for example, in the ocean and lake sediments, wetlands, landfills, rice fields or the gastrointestinal tracts of termites and ruminants (IPCC, 2013). Recent studies demonstrated that methanogenesis occurs in oxic environments. These unconventional methanogenic pathways are mediated by aerobic prokaryotes (Yao et al, 2016) as well as eukaryotes, including plants (Keppler et al, 2006; Lenhart et al, 2016), animals

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call