Abstract
Abstract A new reservoir quality model is proposed for the Late Cretaceous Springar Formation sandstones of the Vøring Basin. Instead of a depth-related compactional control on reservoir quality, distinct high- and low-permeability trends are observed. Fan sequences which sit on the high-permeability trend are characterized by coarse-grained facies with a low matrix clay content. These facies represent the highest energy sandy turbidite facies within the depositional system, and were deposited in channelized or proximal lobe settings. Fan sequences on the low-permeability trend are characterized by their finer grain size and the presence of detrital clay, which has been diagenetically altered to a highly microporous, illitic, pore-filling clay. These fan sequences are interpreted to have been deposited in proximal–distal lobe environments. Original depositional facies determines the sorting, grain size and detrital clay content, and is the fundamental control on reservoir quality, as the illitization of detrital clay is the main mechanism for reductions in permeability. Core-scale depositional facies were linked to seismic-scale fan elements in order to better predict porosity and permeability within each fan system, allowing calibrated risking and ranking of prospects within the Springar Formation play.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Geological Society, London, Petroleum Geology Conference Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.