Abstract

The Okhotsk Sea, which connects the high latitude Asian continent and the North Pacific, plays an important role in modern and past climate changes due to seasonal sea ice coverage and as a precursor of the North Pacific Intermediate Water. The long-term glacial-interglacial changes of sea ice coverage and its impacts on terrigenous transport and surface primary productivity in the Okhotsk Sea remain, however, not well constrained. Base on the paleomagnetic, rock magnetic, micropaleontological (diatom), and geochemical studies of the marine sediment core MD01-2414 (53°11.77′N, 149°34.80′E, water depth: 1,123 m) taken in the central Okhotsk Sea, we reconstruct the terrigenous sediment transport and paleoceanographic variations during the past 1550 thousand years (kyr). Seventeen geomagnetic excursions are identified from the paleomagnetic directional record. Close to the bottom of the core, an excursion was observed, which is proposed to be the Gilsa event ∼1550 thousand years ago (ka). During glacial intervals, our records reveal a wide extension of sea ice coverage and low marine productivity. We observed ice-rafted debris from mountain icebergs composed of coarse and high magnetic terrigenous detritus which were derived from the Kamchatka Peninsula to the central Okhotsk basin. Still during glacial intervals, the initiation (i.e., at ∼900 ka) of the Mid-Pleistocene Transition marks the changes to even lower marine productivity, suggesting that sea-ice coverage became larger during the last 900 ka. During interglacial intervals, the central Okhotsk Sea was either devoid of sea-ice or the ice was at best seasonal; resulting in high marine productivity. The weaker formation of Okhotsk Sea Intermediate Water, lower ventilation, and microbial degradation of organic matter depleted the oxygen concentration in the bottom water and created a reduced environment condition in the sea basin. The freshwater supplied by snow or glacier melting from Siberia and Kamchatka delivered fine grain sediments to the Okhotsk Sea. During the stronger interglacial intervals after the Mid-Brunhes Transition (i.e., Marine Isotope Stages 1, 5e, 9, and 11), strong freshwater discharges from Amur River drainage area are in association with intensified East Asian Summer Monsoon. This process may have enhanced the input of fine-grained terrigenous sediments to the central Okhotsk Sea.

Highlights

  • Marine oxygen isotope data reveal that the Northern Hemisphere glaciation had an onset 3.5 million years (Ma) ago and further intensified around the end of Pliocene when it evolved to alternating glacial and interglacial intervals which dominated the global climate (e.g., Bartoli et al, 2005; Lisiecki and Raymo, 2005; Mudelsee and Raymo, 2005)

  • All environmental parameters reported in this study show an apparent glacial/interglacial variability compared with LR04-MISs (Figure 3)

  • To investigate morphology of the ferromagnetic mineral, we studied in detail the terrigenous detrital materials of one representative sample from one interglacial interval, MIS 5e, which was extracted at depth of 628 cm (118 ka, Marine Isotope Stage, MIS 5e) with a conventional extraction method (Li et al, 2012; Jiang et al, 2020)

Read more

Summary

Introduction

Marine oxygen isotope data reveal that the Northern Hemisphere glaciation had an onset 3.5 million years (Ma) ago and further intensified around the end of Pliocene when it evolved to alternating glacial and interglacial intervals which dominated the global climate (e.g., Bartoli et al, 2005; Lisiecki and Raymo, 2005; Mudelsee and Raymo, 2005) Complicated oscillating variations such as the “MidPleistocene Transition (MPT)” from 1.25 to 0.7 Ma or the MidBrunhes Transition (MBT) from ∼400 to 350 thousand years ago (ka) with an increase in amplitude of 100 kyr glacial-interglacial cycles occurred during the last 2 Myr (e.g., Jansen et al, 1986; Lisiecki and Raymo, 2005; Yin and Berger, 2010; Elderfield et al, 2012; Head and Gibbard, 2015; Cronin et al, 2017; Barth et al, 2018). The long-term chronology (e.g., magnetostratigraphy) climate variations of interaction between terrestrial Arctic and subarctic Pacific remain to be studied further

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.