Abstract

ABSTRACTThere has been little work to date into the controls on slope‐to‐channel fine sediment connectivity in alpine environments largely ice‐free for most of the Holocene. Characterization of these controls can be expected to result in better understanding of how landscapes “relax” from such perturbations as climate shock. We monitored fine sediment mobilization on a slope segment hydrologically connected to a stream in the largely ice‐free 8·3 km2 Hoophorn Valley, New Zealand. Gerlach traps were installed in ephemeral slope channels to trap surficial material mobilized during rainfall events. Channel sediment flux was measured using turbidimeters above and below the connected slope, and hysteresis patterns in discharge‐suspended sediment concentrations were used to determine sediment sources. Over the 96 day measurement period, sediment mobilization from the slope segment was limited to rainfall events, with increasingly larger particles trapped as event magnitude increased. Less than 1% of the mass of particles collected during these events was fine sediment. During this period, 714 t of suspended sediment was transported through the lower gauging station, 60% of it during rainfall events. Channel sediment transfer patterns during these events were dominated by clockwise hysteresis, interpreted as remobilization of nearby in‐channel sources, further suggesting limited input of fine sediment from slopes in the lower valley. Strong counterclockwise hysteresis, representing input of fine sediment from slope segments, was restricted to the largest storm event (JD2 2009) when surfaces in the upper basin were activated. The results indicate that the slopes of the lower Hoophorn catchment are no longer functioning as sources of fine sediment, but rather as sources of coarse material, with flux rates controlled by the intensity and duration of rainfall events. Although speculative, these findings suggest a shift to a coarse sediment dominated slope‐to‐channel transfer system as the influence of pre‐Holocene glacial erosion declines. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.