Abstract
The early Cambrian witnessed profound environmental changes and biological evolution in Earth’ history. During this period, organic-rich shales were widely distributed over almost the entire Yangtze Block. However, the dominant factor that drove the significant accumulation of organic matter (OM) remains controversial and is still debated. Here, we analyzed TOC, organic carbon isotopes, iron speciation, major and trace elements for the lower Cambrian Niutitang Formation in the upper slope Meiziwan section, to investigate the dominant factor controlling OM accumulation. High contents of TOC and Baxs reveal an OM-enriched feature of the Niutitang Formation, and the coupled relationship between them suggest a strong production control on OM accumulation at Meiziwan. Meanwhile, negative relationships between TOC and chemical index of alteration (CIA) values as well as Al contents suggest that influence of chemical weathering and terrestrial input on OM accumulation were limited. Fairly low CoEF × MnEF values provide strong evidence that the deposition of organic-rich shales was under the control of oceanic upwelling event. The upwelling event would bring nutrient-rich deep waters into surface water, stimulating phytoplankton bloom and primary productivity in surface water and facilitating OM enrichment. Meanwhile, enhanced accumulation of OM would have promoted subsequent bacterial sulfate reduction, leading to the occurrence of occasional euxinia (evidenced by iron speciation and redox-sensitive trace element data) and promoting preservation of OM. Taken together, our results shed light on the critical role of oceanic upwelling on the marine primary productivity on the earliest Cambrian Yangtze Platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.