Abstract

We conducted a 15N-tracer study in a fertilized, forested catchment at the Bear Brook Watersheds in Maine (BBWM), USA, in order to characterize N cycling processes, identify sinks for ammonium-N additions, and determine the contribution of the experimental ammonium additions to nitrate exports from the treated catchment. Distributions of 15N in plant tissues, soils, precipitation and streamwater collected before adding tracers showed that nitrate-N (the dominant form of inorganic N deposition at the site) inputs under ambient conditions were depleted in 15N relative to plants and that soil was enriched in 15N relative to plants. The 15N content of streamwater nitrate was within the range of 15N contents in natural plant tissues, suggesting that nitrate deposited from the atmosphere is reduced and assimilated into soil and plant N pools before being leached as nitrate from the catchment. Variations in 15N natural abundances also suggested that most N uptake by trees is from the forest floor and that nitrification occurs in soils at this catchment under ambient conditions. Changes in 15N contents of plant tissues, soils and streamwater after adding a 15N tracer to the ammonium sulfate fertilizer applied to the treated catchment showed that soils were the dominant sink for the labeled ammonium. Surface soils (Oca horizon plus any underlying mineral soil to 5cm depth) assimilated 19 to 31 percent of the 42 kg ha-1 of 15N-labelled ammonium-N during the tracer study. Aboveground biomass assimilated 8 to 17 percent of the labeled ammonium-N additions. Of the three forest types on the catchment, the soil:biomass assimilation ratio of labeled-N was highest in the spruce forest, intermediate in the beech-dominated hardwood forest and lowest in the mixed hardwood-spruce forest. Although ammonium sulfate additions led to increases in streamwater nitrate, only 2 of the 13 kg ha-1 of nitrate-N exported from the catchment during the 2 years of tracer additions was derived from the 42 kg ha-1 of labeled ammonium-N additions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.