Abstract

Fire in riparian areas has the potential to influence the functions riparian vegetation provides to streams and aquatic biota. However, there is little information on the effects of fire on riparian areas. The objectives of the present study were to: ( i) determine how fire severity interacts with riparian topographic setting, micro-environmental conditions, and pre-fire community composition to control post-fire regeneration; ( ii) determine how riparian regeneration patterns and controls change during early succession; and (iii) determine how critical riparian functions are influenced by and recover after fire. Study locations included the Biscuit Fire in southwestern Oregon and the B&B Complex Fire in the Cascade Mountain Range of west-central Oregon, USA. We measured post-fire woody species regeneration, and measured factors such as fire severity, pre-fire species composition, and stream size as potential factors associated with post-fire regeneration patterns. At a relatively coarse spatial scale, patterns in post-fire colonization were influenced by elevation. At finer spatial scales, both conifer- and hardwood-dominated riparian plant communities were self-replacing, suggesting that each community type tends to occur in specific ecological settings. Abundant post-fire regeneration in riparian areas and the self-replacement of hardwood- and conifer-dominated communities indicate high resilience of these disturbance-adapted plant communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.