Abstract
Outcrop data has been used to examine the spatial arrangement of fractures in the damage zones of a segment of the large-scale Moab Fault (45 km in length), SE Utah. The characteristics of the footwall and hanging wall damage zones show pronounced differences in the deformation pattern: (1) there is a well-developed syncline in the hanging wall, as opposed to sub-horizontal bedding of the footwall; (2) the footwall damage zone is sub-divided into an inner zone (0–5 m from fault core) and an outer zone (>5 m) based on differences in deformation band frequency, whereas no clear sub-division can be made in the hanging wall; (3) the hanging wall damage zone is more than three times wider than the footwall damage zone; (4) there is a higher abundance of antithetic fractures and deformation bands in the hanging wall than in the footwall; and (5) the antithetic structures generally have more gentle dips in the hanging wall than in the footwall. The main conclusion is that the structural pattern across the fault zone is strongly asymmetric. The deformation pattern is partly influenced by lithology and/or partly by processes associated with the development of the fault core. We suggest, however, that the most important cause for the asymmetric strain distribution is the development of the hanging wall syncline and the resulting asymmetric stress pattern expected to exist during fault propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.