Abstract

In 7- to 10-day-old leaves of etiolated barley (Hordeum vulgare), all of the enzymes that convert delta-aminolevulinic acid to chlorophyll are nonlimiting during the first 6 to 12 hours of illumination, even in the presence of inhibitors of protein synthesis. The limiting activity for chlorophyll synthesis appears to be a protein (or proteins) related to the synthesis of delta-aminolevulinic acid, presumably delta-aminolevulinic acid synthetase. Protein synthesis in both the cytosol and plastids may be required to produce nonlimiting amounts of delta-aminolevulinic acid. The half-life of a limiting protein controlling the synthesis of delta-aminolevulinic acid appears to be about 1(1/2) hours, when determined with inhibitors of protein synthesis. Acceleration of chlorophyll synthesis by light is not inhibited by inhibitors of nucleic acid synthesis, but is inhibited by inhibitors of protein synthesis. A model for control of chlorophyll synthesis is proposed, based on a light-induced activation at the translational level of the synthesis of proteins forming delta-aminolevulinic acid, as well as the short half-life of these proteins. Evidence is presented confirming the idea that the holochrome on which protochlorophyllide is photoreduced to chlorophyllide functions enzymatically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call