Abstract

CO2 sequestration is regarded as an important strategy for reducing anthropogenic CO2 emissions. Both the nature and rate of fluid–mineral reactions in CO2–water–rock systems are crucial, yet poorly constrained, parameters in understanding the fate of CO2 injected in geological formations. This study models reactions and reaction rates in an exhumed CO2-charged aquifer where CO2-rich brines have bleached red sandstones by dissolution of hematite grain coatings. We show that the vertical movement of the reaction front is dominated by diffusion and this allows calculation of reaction rates for the dissolution of hematite grain coatings and K-feldspar. Using mineral surface areas calculated from BET measurements, we estimate K-feldspar dissolution rates of 3.4±2.0×10−13molm−2s−1; and hematite reaction rates of 6.1±5.0×10−16molm−2s−1. The rates for K-feldspar are lower than previous, experimentally derived, estimates of K-feldspar dissolution rates by 1–2 orders of magnitude, likely explained by the proximity of the natural system to equilibrium. The inferred hematite reaction rates are 5–6 orders of magnitude slower than laboratory experiments and appear to be controlled by the chemical gradients imposed by the more sluggish K-feldspar dissolution. As the majority of potentially mobile trace metals are hosted in iron-oxide grain coatings, we argue that the rate of contaminant mobilization by CO2-charged brines will be lower than suggested by laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.