Abstract

The interest in wave energy converters (WECs) is increasing, the study of grid connection of WEC along with the control system has become inevitable. WEC such as an oscillating water column (OWC) device involves conversions in various physical domains, thus a model describing the conversions at each stage and coupling between them should be accurate yet simple enough to reduce the computation time involved. The already existing models do not include all the components of wave to wire conversion. This paper presents a wave to wire model for control system studies. The model reduction technique is used to create a dynamically equivalent model for any large systems have more interconnecting stages. The dynamics involved in conversion stages are hydrodynamic and aerodynamic coupling at the capture chamber, aerodynamic and thermodynamic coupling inside the capture chamber, aerodynamic and rotor dynamic coupling in air turbine; and rotor dynamics and generator dynamics in the turbine generator coupling. Thus, a wave to wire model is represented to capture all the dynamics involved. It is observed that the model retains its fundamental physics, improves the computation time and reduces the number of unknowns to describe the state-space of OWC system. The accuracy and efficiency of the model is investigated through various static and dynamic analyses and found acceptable for OWC-WEC control system studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call