Abstract

Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NO x emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NO x to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-oriented simulation models. Unfortunately, the same reasons that motivate the use of simulation models also hinder the capacity to obtain sufficient measurement data at different operating points for developing the models. A mean value engine model of a large two-stroke diesel with exhaust gas recirculation that can be simulated faster than real time is presented and validated. An analytic model for the cylinder pressure that captures the effects of changes in the fuel control inputs is also developed and validated with cylinder pressure measurements. A parameterization procedure that deals with the low number of measurement data available is proposed. After the parameterization, the model is shown to capture the stationary operation of the real engine well. The transient prediction capability of the model is also considered satisfactory which is important if the model is to be used for exhaust gas recirculation controller development during transients. Furthermore, the experience gathered while developing the model about essential signals to be measured is summarized, which can be very helpful for future applications of the model. Finally, models for the ship propeller and resistance are also investigated, showing good agreement with the measured ship sailing signals during maneuvers. These models give a complete vessel model and make it possible to simulate various maneuvering scenarios, giving different loading profiles that can be used to investigate the performance of exhaust gas recirculation and other controllers during transients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.