Abstract
There is presently intense interest in the development of synthetic nanopores that recapitulate the functional properties of biological water channels for a wide range of applications. To date, all known synthetic water channels have a hydrophobic lumen, and while many exhibit a comparable rate of water transport as biological water channels, there is presently no rationally designed system with the ability to regulate water transport, a critical property of many natural water channels. Here, we describe a self-assembling nanopore consisting of stacked macrocyclic molecules with a hybrid hydrophilic/hydrophobic lumen exhibiting water transport that can be regulated by alkali metal ions. Stopped-flow kinetic assays reveal a non-monotonic-dependence of transport on cation size as well as a strikingly broad range of water flow, from essentially none in the presence of the sodium ion to as high a flow as that of the biological water channel, aquaporin 1, in the absence of the cations. All-atom molecular dynamics simulations show that the mechanism underlying the observed sensitivity is the binding of cations to defined sites within this hybrid pore, which perturbs water flow through the channel. Thus, beyond revealing insights into factors that can modulate a high-flux water transport through sub-nm pores, the obtained results provide a proof-of-concept for the rational design of next-generation, controllable synthetic water channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.