Abstract

The roles of spatial symmetry and strength of external time-dependent perturbation on the dynamics of a quantum particle, initially localized in one of the wells of an asymmetric double-well potential are studied using the recently developed techniques incorporating quantum theory of motion and time-dependent Fourier grid Hamiltonian methods. The model used here includes a mimic of the related experimental situations which is considered as a perturbation to the static double-well potential. Analysis of localized and delocalized phase space structures and corresponding time-profile of tunneling probability reveal the recipe toward controlling the tunneling oscillations by modulating the parameters of applied perturbation. A study on a stochastic pulsating potential also reveals the root to the quantum localization, even in moderate field strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.