Abstract

This work investigates the effect of wall thickness on the thermal conductivity of mesoporous silica materials made from different precursors. Sol-gel- and nanoparticle-based mesoporous silica films were synthesized by evaporation-induced self-assembly using either tetraethyl orthosilicate or premade silica nanoparticles. Since wall thickness and pore size are correlated, a variety of polymer templates were used to achieve pore sizes ranging from 3-23 nm for sol-gel-based materials and 10-70 nm for nanoparticle-based materials. We found that the type of nanoscale precursor determines how changing the wall thickness affects the resulting thermal conductivity. The data indicate that the thermal conductivity of sol-gel-derived porous silica decreased with decreasing wall thickness, while for nanoparticle-based mesoporous silica, the wall thickness had little effect on the thermal conductivity. This work expands our understanding of heat transfer at the nanoscale and opens opportunities for tailoring the thermal conductivity of nanostructured materials by means other than porosity and composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call