Abstract

The key parameter controlling the glass transition of colloidal suspensions is φ, the fraction of the sample volume occupied by the particles. Unfortunately, changing φ by varying an external parameter, e.g., temperature T as in molecular glass formers, is not possible, unless one uses thermosensitive colloidal particles, such as the popular poly(N-isopropylacrylamide) (PNiPAM) microgels. These, however, have several drawbacks, including high deformability, osmotic deswelling, and interpenetration, which complicate their use as a model system to study the colloidal glass transition. Here, we propose a new system consisting of a colloidal suspension of non-deformable spherical silica nanoparticles, in which PNiPAM hydrogel spheres of ∼100-200μm size are suspended. These non-colloidal "mesogels" allow for controlling the sample volume effectively available to the silica nanoparticles and hence their φ, thanks to the T-induced change in mesogels' volume. Using optical microscopy, we first show that the mesogels retain their ability to change size with T when suspended in Ludox suspensions, similarly as in water. We then show that their size is independent of the sample thermal history such that a well-defined, reversible relationship between T and φ may be established. Finally, we use space-resolved dynamic light scattering to demonstrate that, upon varying T, our system exhibits a broad range of dynamical behaviors across the glass transition and beyond, comparable with those exhibited by a series of distinct silica nanoparticle suspensions of various φ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.