Abstract
We study possibilities to suppress the transverse modulational instability (MI) of dark-soliton stripes in two-dimensional (2D) Bose-Einstein condensates (BECs) and self-defocusing bulk optical waveguides by means of quasi-1D structures. Adding an external repulsive barrier potential (which can be induced in BEC by a laser sheet, or by an embedded plate in optics), we demonstrate that it is possible to reduce the MI wavenumber band, and even render the dark-soliton stripe completely stable. Using this method, we demonstrate the control of the number of vortex pairs nucleated by each spatial period of the modulational perturbation. By means of the perturbation theory, we predict the number of the nucleated vortices per unit length. The analytical results are corroborated by the numerical computation of eigenmodes of small perturbations, as well as by direct simulations of the underlying Gross-Pitaevskii/nonlinear Schr\"{o}dinger equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.