Abstract

The transport of the binary mixture of self-propelled rods (SPRs) and passive rods in the asymmetric conjugate periodic channel is studied by dissipative particle dynamics (DPD) simulations. It is found that the autonomous pumping of the binary mixture of active and passive rods can be achieved by either the individual or collective behaviour of SPRs. More specifically, the transport of passive rods can be driven through the individual, collective jostlement of the active rods, and crowding out effect. The strength of self-propulsion, rod length, rod concentration, and geometric feature of the channel determines the mechanism of pumping. In addition, the drift of the binary mixture can be in the positive and negative directions of the channel or the currents of SPRs and passive rods in opposite directions and relies on the geometric feature of the channel and concentration of the two species. Overall, our simulation study offers an efficient approach of flow control for both species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.