Abstract

We have studied the influence of two structurally isomeric organic salts, namely, 2-sodium-3-hydroxy naphthoate (SHN) and 1-sodium-2-hydroxy naphthoate (SHN1), on the phase behavior of concentrated aqueous solutions of the cationic surfactant cetylpyridinium chloride (CPC). Partial phase diagrams of the two systems have been constructed using polarizing optical microscopy and x-ray diffraction techniques. A variety of intermediate phases is seen in both systems for a range of salt concentrations. The CPC-SHN-water system exhibits the rhombohedral and tetragonal mesh phases in addition to the random mesh phase, whereas the CPC-SHN1-water system shows only the tetragonal and random mesh phases. The CPC-SHN-water system also exhibits two nematic phases consisting of cylindrical and disk-like micelles at relatively low and high salt concentrations, respectively. These results show that the concentration of the strongly bound counterion provided by the organic salt can be used as a control parameter to tune the stability of different intermediate phases in amphiphile-water systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.