Abstract

We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ∼70 to ∼1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition by using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10(2) to 1.7 × 10(4) μm/s as the width decreases from ∼50 to ∼2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO2, the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO2 microcrystals. Our findings not only enhance the understanding of VO2 intrinsic properties but also contribute to the development of innovative electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call