Abstract

The use of thixotropic gel electrolytes in the rechargeable hybrid aqueous battery improves the battery performance but it is required to have a corrosion inhibitor in the gel electrolyte. These inhibitors are not always friendly to the environment. In this work, we use lignin – a renewable material – to neutralize strong acid sites of the fumed silica gelling agent prior to gel preparation. Linear polarization, chronoamperometry, and ex-situ scanning electron microscopy examinations show that the new gel electrolyte reduces the corrosion on zinc (up to 43%) and supports planar zinc deposit. In other words, the shape of the zinc surface is controlled and it is further confirmed by the XRD and SEM of post-battery run anodes. Moreover, the battery using this new lignin coated fumed silica based gel electrolyte exhibits a float charge current as low as 0.0025 mA after 24 h of monitoring, which is 30.6% lower than the reference. The capacity retention of gelled battery is as high as 82% after 1000 cycles at 4 C, which is 14% higher than the reference battery using reference liquid electrolyte under the same CC-CV test, complemented by lower self-discharge and higher rate capability. The results lead the team nearer to a commercializable gelled battery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.