Abstract

ABSTRACTPolyvinylidene fluoride (PVDF) is a significant polymer in the formation of nanofiber webs via the electrospinning technique. In this paper, three PVDF-wrinkled fiber webs with different molecular weights (MWs) (180000, 275000, and 530000) were generated via the electrospinning method by using tetrahydrofuran/N,N-dimethylformamide at the solvent ratio of 1:1 as a mixed solvent. The formation mechanism of the wrinkled electrospun PVDF fibers is demonstrated. Furthermore, the relationships between the MW and the surface structure, mechanical properties, crystalline phases, and piezoelectric properties of electrospun PVDF fibers are comprehensively investigated. The results reported that the surface structure, mechanical properties, crystalline phases, and piezoelectric properties of wrinkled electrospun PVDF fibers can be affected intensely by maneuvering the MW. We believe this study can be served as a good reference for the effect of MW on the morphology and properties of electrospun fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call