Abstract
This paper explores a novel mechanism for controlling the surface properties of polymer-coated colloids using targeted ("sticky") nanoparticles which attract monomers of certain polymer species. In our study, colloids are coated by two types of tethered polymer chains having different chemical properties. Attraction of nanoparticles to the monomers of one polymer type causes these polymer chains to contract toward the grafting surface, rendering the other type more exposed to the environment. Thus, the effective surface properties of the colloid are dominated by the intended polymer type. We use coarse-grained molecular dynamics (CGMD) simulation to demonstrate that introducing nanoparticles which interact preferentially with certain types of polymers makes it possible to switch between different surface properties of the colloid. This mechanism can in principle be exploited in drug delivery systems and self-assembly applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.