Abstract

AbstractControlling of thickness profile in micro‐scale pixels via an inkjet printing process remains a challenge and strict control of surface energy is required. Herein, the surface energy of each substrate is controlled by using CF4 plasma treatment (CPT) to control thickness profile and improve color conversion efficiency (CCE) of the inkjet printed quantum dots (QDs) color conversion layer (CCL). The bank surface becomes hydrophobic due to the fluorination, while the glass becomes hydrophilic due to the cleaning effect by the CPT. Through a systemic investigation of the polar and non‐polar components of the surface energy, it is found that the ink behavior of inkjet‐printed QDs in the pixels is closely related to the non‐polar component of the surface energy. In addition, it is found that more rigorous control of the surface is required for array printing and a wide range of thickness profile control is possible by CPT. The thickness increases by up to 10 µm, the blue leakage is reduced by 26.38%, and the CCE increases by a maximum of 5.71% depending on the CPT. As a result, the relationship between the thickness profile of the CCL and CCE is confirmed through the fabrication of QD‐organic light emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.