Abstract

AbstractSolid polymer electrolytes (SPEs) are long sought after for versatile applications due to their low cost, light weight, flexibility, ease of scale‐up, and low interfacial impedance. However, obtaining SPEs with high Li+ conductivity (σ+) and high voltage stability to avoid concentrated polarization and premature capacity loss has proven challenging. Here a stretchable dry‐SPE is reported with a semi‐interpenetrating, supermolecular architecture consisting of a cross‐linked polyethylene oxide (PEO) tetra‐network and an alternating copolymer poly(ethylene oxide‐alt‐butylene terephthalate). Such a unique supermolecular architecture suppresses the formation of Li+/PEO intermolecular complex and enhances the oxidation stability of PEO‐based electrolyte, thus maintaining high chain segmental motion even with high salt loading (up to 50 wt%) and achieving a wide electrochemical stability window of 5.3 V. These merits enable the simultaneous accomplishment of high ionic conductivity and high Li+ transference number (t+) to enhance the energy efficiency of energy storage device, and electrochemical stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call