Abstract

The spin filtering effect of the electron current in a double-barrier resonant-tunneling diode (RTD) consisting of ZnMnSe semimagnetic layers has been studied theoretically. The influence of the distribution of the magnesium ions on the coefficient of the spin polarization of the electron current has been investigated. The dependence of the spin filtering degree of the electron current on the external magnetic field and the bias voltage has been obtained. The effect of the total spin polarization of the electron current has been predicted. This effect is characterized by total suppression of the spin-up component of electron current, that takes place when the Fermi level coincides with the lowest Landau level for spin-up electrons in the RTD semimagnetic emitter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call