Abstract

In a recent paper by one of the authors and collaborators, motivated by the Olive Quick Decline Syndrome (OQDS) outbreak, which has been ongoing in Southern Italy since 2013, a simple epidemiological model describing this epidemic was presented. Beside the bacterium Xylella fastidiosa, the main players considered in the model are its insect vectors, Philaenus spumarius, and the host plants (olive trees and weeds) of the insects and of the bacterium. The model was based on a system of ordinary differential equations, the analysis of which provided interesting results about possible equilibria of the epidemic system and guidelines for its numerical simulations. Although the model presented there was mathematically rather simplified, its analysis has highlighted threshold parameters that could be the target of control strategies within an integrated pest management framework, not requiring the removal of the productive resource represented by the olive trees. Indeed, numerical simulations support the outcomes of the mathematical analysis, according to which the removal of a suitable amount of weed biomass (reservoir of Xylella fastidiosa) from olive orchards and surrounding areas resulted in the most efficient strategy to control the spread of the OQDS. In addition, as expected, the adoption of more resistant olive tree cultivars has been shown to be a good strategy, though less cost-effective, in controlling the pathogen. In this paper for a more realistic description and a clearer interpretation of the proposed control measures, a spatial structure of the epidemic system has been included, but, in order to keep mathematical technicalities to a minimum, only two players have been described in a dynamical way, trees and insects, while the weed biomass is taken to be a given quantity. The control measures have been introduced only on a subregion of the whole habitat, in order to contain costs of intervention. We show that such a practice can lead to the eradication of an epidemic outbreak. Numerical simulations confirm both the results of the previous paper and the theoretical results of the model with a spatial structure, though subject to regional control only.

Highlights

  • The etiological agent of olive tree disease known as olive quick decline syndrome (OQDS) is the plant pathogenic bacterium Xylella fastidiosa, which is a vector-borne bacterium

  • The results reported in this paper confirm that the most promising target for an effective and cost-efficient control of the X. fastidiosa epidemic is represented by agricultural management practices consisting of the removal of the weeds in the whole relevant habitat of the olive orchards

  • We have extended the ordinary differential equation (ODE) model introduced in Brunetti et al (2020) to an integro-partial differential system which takes into account the spatial structure of the relevant epidemic system, subject to possible control strategies, including weed cut, insect traps, treated nets, more resistant cultivar, etc

Read more

Summary

Introduction

The etiological agent of olive tree disease known as olive quick decline syndrome (OQDS) is the plant pathogenic bacterium Xylella fastidiosa, which is a vector-borne bacterium. The main vector of Xylella fastidiosa in Southern Italy has been identified in the so-called meadow spittlebug, i.e., the Philaenus spumarius, a xylem sap-feeding specialist. Their juvenile form (nymphs) develops on weeds or ornamental plants, confined in a foam produced by themselves for protection from predators and temperature, while their adult form moves to olive tree canopies. Experiments have shown a larger infection prevalence of adults on olive trees than on weeds; this fact may lead to the assumption of infection of adults from infected olive trees more than from weeds. X. fastidiosa transmission is the result of four events [see e. g. Almeida et al (2005), Redak et al (2004) and references cited therein]:

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call