Abstract
Spatial and momentum distributions of excited charge carriers in nanoplasmonic systems depend sensitively on optical excitation parameters and nanoscale geometry, which therefore control the efficiency and functionality of plasmon-enhanced catalysts, photovoltaics, and nanocathodes. Growing appreciation over the past decade for the different roles of volume- vs surface-mediated excitation in such systems has underscored the need for explicit separation and quantification of these pathways. Toward these ends, we utilize angle-resolved photoelectron velocity map imaging to distinguish these processes in gold nanorods of different aspect ratios down to the spherical limit. Despite coupling to the longitudinal surface plasmon, we find that resonantly excited nanorods always exhibit transverse (sideways) multiphoton photoemission distributions due to photoexcitation within volume field enhancement regions rather than at the tip hot spots. This behavior is accurately reproduced via ballistic Monte Carlo modeling, establishing that volume-excited electrons primarily escape through the nanorod sides. Furthermore, we demonstrate optical control over the photoelectron angular distributions via a screening-induced transition from volume (transverse/side) to surface (longitudinal/tip) photoemission with red detuning of the excitation laser. Frequency-dependent cross sections are separately quantified for these mechanisms by comparison with theoretical calculations, combining volume and surface velocity-resolved photoemission modeling. Based on these results, we identify nanomaterial-specific contributions to the photoemission cross sections and offer general nanoplasmonic design principles for controlling photoexcitation/emission distributions via geometry- and frequency-dependent tuning of the volume vs surface fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.