Abstract

A novel class of self-assembling nanoparticles is formed with viologen-resorcin[4]arene cavitands; the association model is strongly controlled by their hydrophobicity. Interestingly, the cavitand assemblies are designed through click chemistry to form self-assembled noncovalently connected aggregates through counterion displacement. The iodide and benzoate ions are utilized as strongly polarizable counterions to induce cavitand self-assembly. The counterion-mediated decrease in hydrophilicity of the viologen-resorcin[4]arenes is the underlying trigger to induce particle formation. These particles can be used as nanocontainers and find their applications in delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.