Abstract
Noble metal nanoparticles and nanoshells support surface plasmons at optical frequencies. These resonances, known as localized surface plasmons (LSPs), are sensitive to the dielectric properties of the environment and, in particular, to the refractive index of the material close to the surface of the particle. This sensitivity can be exploited in molecular detection systems that use nanoparticles functionalized with receptors to (a) bind target molecules and (b) optically transduce the resulting change in the dielectric environment. Optimization of an optical nanoparticle sensor involves tailoring the particle to the target so as to maximize the sensitivity of spectroscopic features to the dielectric variation associated with binding of target molecules to the particle surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.