Abstract

Artificial molecular machines have played an indispensable role in many chemical and biological processes in recent decades. Among all kinds of molecular machines, molecular rotor systems have attracted increasing attention. In this work, we used density functional theory (DFT) calculations to investigate the rotational behaviors of on-surface molecular rotors based on porphyrin, which is a species of molecule with wide biological and chemical compatibilities. Moreover, our comparative studies demonstrate that macrocycle metalation, supporting substrate replacement, and functional group substitutions can effectively modify the rotational barrier of porphyrin rotors. We believe that these modification methods can further guide the path to achieve highly controllable on-surface molecular rotor systems in future applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.