Abstract

Light-induced control of ions within small Coulomb crystals is investigated. By intense intracavity optical standing wave fields, subwavelength localization of individual ions is achieved for one-, two-, and three-dimensional crystals. Based on these findings, we illustrate numerically how the application of such optical potentials can be used to tailor the normal mode spectra and patterns of multi-dimensional Coulomb crystals. The results represent, among others, important steps towards controlling the crystalline structure of Coulomb crystals, investigating heat transfer processes at the quantum limit and quantum simulations of many-body systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.