Abstract

With the aim of controlling the position of functional groups in a substrate-supported monolayer, a new family of functionalized linear alkyl chains was designed and synthesized, aided by molecular mechanics and dynamics simulations of its two-dimensional self-assembly on graphite. The self-assembly of these amino functionalized diamides at the liquid/solid interface was investigated with scanning tunneling microscopy. Intermolecular hydrogen-bonding interactions involving amides, combined with the effect of molecular symmetry and chirality, were found to guide the self-assembly. Control of the relative position and orientation of the amine groups was achieved, in the case of enantiopure compounds. Interestingly, racemates led to both racemic conglomerate and solid solution formation, with a concomitant loss of positional and orientational control of the amino groups as a result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.