Abstract

Phase behavior of complex salts formed by a cationic surfactant and different ethoxylated polyions was investigated in water and with addition of two n-alcohols of different chain lengths: n-butanol and n-decanol. The polyion possesses a main chain of methacrylic acid randomly grafted with oligo(ethylene oxide) chains. Strong electrostatic interaction between the anionic main chain and the cationic surfactant hexadecyltrimethylammonium (C16TA) leads to the formation of C16TAP(MA-MAEOn) x:y complex salts. Modifications in polyion structure, such as changes in the proportion of grafted comonomers and in the side chain length caused differences in the overall balance of interactions with water and n-alcohols, altering the complex salt solubility and, consequently, the formed liquid–crystalline structures. The role of n-decanol as a cosurfactant was verified, but the hydrophilic side chains expanded the capacity of the formed liquid crystalline phases to incorporate water. Additionally, a novel structure, probably cubic bicontinuous (Pn3m), was observed coexisting with lamellar phases at low water concentration. Because n-butanol is known for being a good solvent for poly(ethylene oxide), these side chains intensified the role of this short chain n-alcohol as cosolvent for C16TAP(MA-MAEOn) x:y complex salts, favoring the formation of disordered solutions, including a bicontinuous microemulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.