Abstract
Nanocellulose (NC) is the desired building block for novel biomaterials. The morphology of NC is one of the core parameters impacting the functionality and property of engineered functional materials. This work aims to reveal the relationship between the product morphology and sulfuric acid hydrolysis conditions (including acid concentration, temperature and time), and to realize morphological regulation of obtained NC. Three representative products were obtained from microcrystalline cellulose via sulfuric acid hydrolysis, which are cellulose nanocrystals with broad size distribution (W-CNC, 383.9 ± 131.7 nm in length, 6 ± 2.1 nm in height) obtained by 61 % H2SO4, 55 °C and 90 min, cellulose nanospheres (CNS, 61.3 ± 15.9 nm in diameter) obtained by 64 % H2SO4, 35 °C and 75 min, and CNC with narrow size distribution (N-CNC, 276.1 ± 28.7 nm in length, 4.1 ± 0.6 nm in height), obtained by 64 % H2SO4, 45 °C and 45 min. The results showed that the crystallographic form of W-CNC and N-CNC are cellulose I, while cellulose I and II coexist in CNS. Only W-CNC and N-CNC can form chiral nematic structures through evaporation-induced self-assembly strategy and reflected light with specific wavelengths. In addition, the formation mechanism of CNS with cellulose I/II was proposed, which provided a better understanding of NC morphology regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.