Abstract
In this paper, we show that silicon surfaces patterned with poly(methacrylic acid) brushes are able to control the Brownian motion of 2-3 μm iron particles, which sediment onto the surface in aqueous solution and experience differences in repulsive force depending upon their position. Differences in repulsion lead to different gravitational potential energies across the surface, which gives bias to the Brownian motion taking place. Three regimes have been identified depending upon the brush height: (i) no control of Brownian motion when the brush height is small, (ii) Brownian motion that is influenced by the polymer brush when the brush 17 height is intermediate, (iii) Brownian motion that is confined by polymer brush barriers when the brush height is greatest. The height of brush found necessary to significantly influence iron particle motion was small at 39 nm or 2% of the particle diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.