Abstract

We have performed coarse-grained molecular dynamics simulations of thiophene-based conjugated oligomers to elucidate how the oligomer architecture, specifically the orientation and density of alkyl side chains extending from the thiophene backbones, impacts the order–disorder temperatures and the various ordered morphologies that the oligomers form. We find that the orientation of side chains along the oligomer backbone plays a more significant role than side chain density, side chain–side chain interactions, or side chain length in determining the thermodynamically stable morphologies and the phase transition temperatures. Oligomers with side chains oriented on both sides of the backbone (“anti”) form lamellae, while oligomers with side chains oriented on one side of the backbone (“syn”) assemble into hexagonally packed cylinders that can undergo a second, lower temperature transition to lamellae or ribbons depending on side chain–side chain interaction strength. The strength of side chain–side chain int...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.