Abstract

Amidst the wealth of information that the past few decades of nanomedical research has given us there is one design principle that has emerged as being key for the success of delivery vectors: particle morphology. This review seeks to unpack the various facets of particle morphology that are important for effective integration in vivo. In order to understand the contribution of morphology towards the biophysical function of nanovectors it is important to consider the historical development of such systems and how their physicochemical characteristics are selected. Ultimately, the purpose of this review is to give a clear perspective for the development of future nanovectors and how an integrated approach to their design, with particular focus upon their morphological features (size, shape, stimuli-responsiveness and surface chemistry), is vital for their performance in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.