Abstract

We report the crystallization and microphase separation behavior of an all-conjugated poly(3-hexylthiophene)-b-poly[3-(6-hydroxy)hexylthiophene] (P3HT-b-P3HHT) block copolymer in mixed solvents and demonstrate how the conformations of P3HT and P3HHT chains influence the photophysical properties of the copolymer. It is shown that the balance among π-π stacking of P3HT, P3HHT and microphase separation of the copolymer can be dynamically shifted by controlling the rod-rod interactions of the copolymer via changing the block ratio and solvent blending. A series of nanostructures such as well-ordered nanofibers, spheres and lamellar structures are formed and their formation mechanisms and kinetics are discussed in detail. The variations in P3HT-b-P3HHT conformations are concomitant with a hybrid photophysical property depending on the competition between intrachain and interchain excitonic coupling, resulting in the transformation between J- and H-aggregation. Overall, this work demonstrates how the P3HT-b-P3HHT conformations crystallize and phase-separate in the solution and solid state, and the correlation between their structures and photophysical properties, which improves our understanding of all-conjugated rod-rod block copolymer systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call