Abstract

Plasmonic nanostructures can be used to control the photoluminescence properties of various emitting materials. In this work, an efficient plasmon-induced energy transfer (quenching) was investigated. The luminescence intensity of gold quantum dots (AuQDs) was controlled by the localized surface plasmon resonance of silver nanoprisms (AgNPrs). The quenching was modulated by the degree of spectral overlap between the photoluminescence band of AuQDs and the dipole plasmon resonance of AgNPrs. Furthermore, an in situ controlled quenching effect of AuQDs using an oxidative etching reaction of AgNPrs by hydrogen peroxide (H2O2) was demonstrated. This technique was further developed for application as a H2O2 sensor. This system was capable of detecting 1 nM H2O2 in an aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.