Abstract

Poly(N-isopropylacrylamide) PNIPAAm hydrogels were modified with a new azobenzene-containing co-monomer. In this work, light responsiveness as an additional functionality, is conceptualized to induce two phase transitions in the same material, which can be controlled by light. For a hydrogel with merely 2.5 mol% of this co-monomer, the lower critical solution transition temperature (LCST) was lowered by 12 °C (to 20 °C) compared to PNIPAAm (LCST at 32 °C), as analyzed by differential scanning calorimetry (DSC). The untreated unimodal endotherm split into a bimodal peak upon irradiation with UV-light, giving a second onset due to the switched (Z) isomer-rich regions, LCST*H2.5%-(Z) = 26 °C. On irradiation with 450 nm, leading to the reverse (Z) to (E) isomerization, the endotherm was also reversible. Thus, a photo-switchable hydrogel whose LCST and structure are tunable with the hydrophobicity-hydrophilicity of the (E) and (Z) isomeric state of azobenzene was obtained. The influence of the increase in the mol% of azoacrylate on the LCST was evaluated via DSC, in combination with NMR studies, UV-vis spectroscopy and control experiments with linear polymers. The large light-driven modulation of the LCST adds bistability in thermoresponsive hydrogels, which may open diverse applications in the field of soft robotics actuators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call