Abstract

Semiconducting nanowires (NWs) offer exciting prospects for a wide range of technological applications. The translation of NW science into technology requires reliable high quality large volume production. This study provides an in-depth investigation of the parameters using an atomic layer deposition system to grow zinc oxide (ZnO) seed layers followed by the chemical bath deposition (CBD) of ZnO NWs to demonstrate the low-cost production of uniform single crystal wurtzite phase ZnO NWs that is scalable to large area substrates. The seed layer texture and the morphology of the NWs grown were systematically investigated using atomic force microscopy as a function of the seed layer deposition parameters. It is shown that the NWs growth orientation can be controlled by tuning the seed layer deposition parameters while maintaining the same CBD conditions. Likewise, the diameters and the surface densities of the NWs varied from 23 to 56 nm and 40 to 327 NWs μm−2, respectively. Significantly, the relationship between the seed layer structure and the NW density indicates a clear correlation between the density of seed layer surface features and the resulting surface NW density of NWs grown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call